
1. Introduction

This note accompanies a brief talk on the formal theory of ∞-category theory at the UIUC
Graduate Homotopy Theory Seminar, motivated primarily by the work of Riehl and Verity on
∞-cosmoi in 24 and 5, as well as the classical theory of formal category theory via pro-
arrow equipments discussed by Verity in6 with additional extensions by Shulman in3.
Although this note does not cover the theory of pro-arrow equipments internal to ∞-
categories, as constructed by Ruit in1, Ruit's work is a large motivator for the speaker's
interest in this area.

As discussed at length in a number of the above sources, one of the main goals of formal
category theory is to be able to abstract and encapsulate the essential aspects of category
theory in its many guises, such as enriched category theory and fibrant category theory. A
first attempt at this can be seen in the structure of 2-categories which are rich enough to
formalize notions of adjunctions and equivalences. However, it was found that such
structures alone were insufficient for the development of a great number of important
categorical concepts and tools. For instance, one can formulate a definition of Kan
extensions internal to a 2-category, but this would only produce the naive definition of Kan
extensions rather than the more prolific and useful notion of pointwise Kan extensions.
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well-behaved model of ∞-categories).



Similarly, although one can attempt to representably define fully-faithfulness of functors,
often this will produce the wrong notion, for example when considering enriched concepts.

But why should we care about pointwise Kan extensions over the naive notion that can be
defined internal to any 2-category? Some motivation from homotopy theory is that pointwise
Kan extensions are needed to obtain functorial derived functors, while the result that Quillen
adjunctions descend to adjunctions on the level of homotopy categories also relies on this
pointwise (or more strictly absolute) notion of Kan extensions.

It turns out that the thing missing from these structures is exactly a theory which can
internally discuss the notion of representability and yoneda embeddings. Generalizing, one
can ask that we can encapsulate a suitable notion of profunctors A ↛ B, which are
classically represented by bifunctors Bop × A → Set in ordinary category theory, or
Bop × A → V in a V-enriched context. The canonical example of such a functor (resp. V-
functor) is given by the hom-bifunctor

C(−, −) : C
op × C → Set

for a category C, which is adjoint to the yoneda embedding 𝓎 : C → Ps(C). In this note we
aim to provide a brief intuition for structures that behave like profunctors more generally, and
how we can extend them to ∞-categorical contexts.

2. Classical Theory of Pro-arrow Equipments
Pro-arrow equipments are an additional structure on a bicategory introduced by Wood, and
studied further by Verity in6, in order to encapsulate the structure of profunctors present in
the canonical bicategory Cat2.

However, we will not explore these definitions, as given here, much further in this note,
instead preferring Verity's reformulation in terms of the theory of double categories which we
now briefly review. For this perspective we will primarily follow Shulman's exposition in3,
where he refers to these structures as framed bicategories. These structures have important
applications outside of just the formal theory of category theory, such as in the study of
parametrized spectra and in our ∞-categorical setting to come, parametrized ∞-categories
which provide a way of studying enriched ∞-categories.

Definition 1 �Equipments on Bicategories).

An equipment on a bicategory K consists of another bicategory B along with an identity on
objects bifunctor

(−)∗ : K
co → B

such that for any 1-cell f : a → b in K, f∗ admits a right adjoint f ∗ in B. An equipment is
called a pro-arrow equipment if in addition (−)∗ is locally fully faithful.



2.1. Double Categories and Fibrations

As in3 and4 we will be restricting to what in double-categorical literature is often referred to
as pseudo double categories when speaking of double categories in this note. Intuitively,
one can think of a double category as a pair of a vertical category and a horizontal category
with squares relating their morphisms such that the composition in the horizontal category
need not be strict (and as we will see later with virtual double categories, may not even be
defined).

Here we write ⊙ in diagrammatic ordering, suggesting our emphasis on the perspective that
pro-arrows in a double category represent modules.

Definition 2 �Double Category).

A double category D is an internal category object in Cat2:

equipped with natural isomorphisms

a : (M ⊙ N) ⊙ P M ⊙ (N ⊙ P)

l : (iA ⊙ M) M  and  r : (M ⊙ iB) M

satisfying appropriate coherence diagrams, and which are identities under whiskering with L
or R.

≅
−→

≅
−→

≅
−→

Example 3 �Double Category of Squares in a 2-category).

Let B be a 2-category. Then we have a natural double category Sq(B) whose category B0 is
the underlying category of B, and whose category B1 has as objects 1-cells in B and as
morphisms squares



Horizontal and vertical composition is given by pasting 2-cells.

Example 4 �Double Category of Modules).

Let Mod be the double category with Mod0 = Ring, the category of (unital) rings, and Mod1

the category with objects bimodules and morphisms bimodule homomorphisms. Explicitly, if
A, B, C, and D are rings, and f : A → C and g : B → D are ring homomorphisms, a
square

represents a map of A-B bimodules M → fNg, where fNg is the double restriction of scalars
for N  along both ring maps. Horizontal composition is given by tensor product of modules.

Example 5 �Profunctors).

The double category Prof has Prof0 = Cat, the category of small categories, and Prof1 the
category with objects profunctors F : A

op × B → Set, with a 2-cell



An important piece in the theory of pro-arrow equipments, especially when we inevitably
move on to the theory of equipments as a descriptor for modules between ∞-categories, is
the notion of fibered categories. Briefly, a Grothendieck fibration p : E → B between
categories is a functor such that for every e ∈ E and every morphism f : b → p(e) in B,
there exists a lift φ : e′ → e making the diagram

a pullback in Cat. Intuitively this says that φ universally lifts factorizations through f for maps
comin from E. Dually, an opfibration p : E → B is a functor such that for every e ∈ E and
f : p(e) → b in B, there exists a lift φ : e → e′ making the diagram

a pullback in Cat.

Two important results for fibrations which are relevant to this note are their correspondence
to pseudo-functors under the Grothendieck construction and the relation between fibrations
and op-fibrations in terms of adjunctions in the total category.

given by a natural transformation F ⇒ (G ∘ (g, f op)). Horizontal composition on
profunctors is given by the co-end formula

F ⊙ G(a, c) = ∫
b:B

F(a, b) ⊗ G(b, c)

where ⊗ on the right is standard tensor on Set given by cartesian product, or more general for
V − Prof, is the chosen tensor in V.

Theorem 6 �Grothendieck Construction �Shu,3.8��.

Given a category B, we have an equivalence



□

Proof.
Let f : A → B be a map in B. Note that by the classification of cartesian lifts applied to
identity fillings, we have a natural bijection between maps Y → X in E lying over f and
maps Y → f ∗X in p−1(A). On the other hand, the dual property for opcartesian lifts gives a
bijection between maps Y → X over f and maps f!Y → X in p−1(B). In other words, we
have the natural bijection

p−1(B)(f!Y ,X) ≅p−1(A)(Y , f ∗X)

so the existence of opcartesian lifts is equivalent to the existence of right adjoints, and vice-
versa if we start with an opfibration.

2.2. Pro-arrow Equipments

In addition to the existence of pro-arrows, which are our horizontals arrows in any double
category, we want suitable assumptions on our double categories so that they behave like
profunctors in order to encapsulate an appropriate theory of kan extensions. This behaviour
is encapsulated in the language of fibrations reviewed above.

This structure equivalently encapsulates the idea of base change, which is terminology of
bimodules instead of pro-arrows when talking about double categories, and in particular pro-
arrow equipments.

Let's unpack what it means for (L,R) : D1 → D0 × D0 to be a bifibration. Since such a
functor being a bifibration is equivalent to it being a fibration or a opfibration (c.f. [Shu,4.1])
we'll just consider the case of fibration. Explicitly we're saying that any cup

FibB ≃ [Bop, Cat]

where the category on the left has as objects Grothendieck fibrations and as morphisms maps
in the slice Cat/B which preserve cartesian morphisms, and the category on the right has as
objects pseudo-functors and as morphisms strong transformations, where B is viewed as a
discrete bicategory.

Proposition 7 �Adjoint Relation Between Fibrations and Op-Fibrations �Shu,3.9��.

A fibration p : E → B is an opfibration if and only if for every f : A → B in B, the natural
functor f ∗ : p−1(B) → p−1(A) has a left adjoint f! : p−1(A) → p−1(B).

Definition 8 �Pro-arrow Equipment).

A double category D = (D1, D0, ⊙,L,R, i) is said to be a pro-arrow equipment on D0

(L,R) : D1 → D0 × D0 is a bifibration.



can be universally filled to a square

in the sense that any rectangle uniquely factors through it:

This structure is equivalent to the existence of companions and conjoints for all vertical
morphisms in the double category D (c.f. [Shu, 4.1]).

Definition 9 �Companions and Conjoints).

Let D be a double category and f : A → B a vertical arrow. A companion for f is a
horizontal arrow fB : A ↛ B together with squares



It is easy to see that companions and conjoints arise from the characterizing property of
(L,R) being a fibration and opfibration, respectively. Explicitly, for f : A → B is a vertical
morphism, then fB = f ∗iBid∗

B, where iB = i(B) is the identity at B in D1 under horizontal
composition. Similarly, Bf = id∗

AiBf
∗. Going the other way, a filling h∗Mg∗ as above the

definition can be precisely obtained from companions and conjoints as the composite, or

satisfying

and

A conjoint of f is a horizontal morphism Bf : B ↛ A together with dual squares and
relations.



tensor, hC ⊙ M ⊙ Dg, while the dual filling for opfibrations, h!Mg!, is given by
Ch ⊙ M ⊙ gD.

These are the structures that will allow us to formalize and generalize weighted colimits,
fully-faithfulness, and (pointwise) Kan extensions internally to a pro-arrow equipment.

Observe that if F : A → B is any functor, then the profunctor FB : B
op × A → Set under

adjunction corresponds to a functor A → Ps(B) given by sending a ∈ A to
𝓎F(a) = B(−,F(a)). By the universal property of Ps(A) this corresponds to an accessible
functor

F! : Ps(A) → Ps(B), X̂ ↦ F!X̂(b) = ∫
a:A

X̂(a) × B(b,F(a))

given by pointwise left Kan extension along F ,

Example 10 �Double Category of Modules).

Mod is a pro-arrow equipment, where for ring homomorphisms f : A → B and g : C → D

as well as a (B,D) bimodule M , f ∗Mg∗ is exactly the (A,C) bimodule obtained by
restriction. Equivalently, f ∗Mg∗ = f ∗C ⊗C M ⊗D Dg∗. The previous formulas also tells
us that this forces for N  a (A,C) bimodule that

f!Ng! = Bf ∗ ⊗A N ⊗C g∗D

which is the usual base-change formula for bimodules.

Example 11 �Double Category of Profunctors).

Prof is a pro-arrow equipment where for functors F : A → B and G : C → D, and a
profunctor H : Dop × B → Set, its pullback F ∗HG∗ is given by the composite

H ∘ Gop × F : C
op × A → Set

On the other hand, if K : Cop × A → Set is another profunctor, then F!KG! is given by
pointwise left Kan extension:

F!KG!(d, b) = (BF ⊙ K ⊙ GD)(d, b) = ∫
(c,a):Cop×A

B(F(a), b) × K(c, a) × D(d,G(c))



□

On the other hand, the profunctor BF : A op × B → Set under adjunction gives B → Ps(A)

where b ∈ B is sent to B(F(−), b). By the universal property of Ps(B) this corresponds to an
accessible functor

F ∗ : Ps(B) → Ps(A), X̂ ↦ X̂ ∘ F op

and as the reader might observe, this gives us an adjoint pair F! ⊣ F ∗. This observation is
actually a general phenomenon of pro-arrow equipments.

Proof.
We can explicit construct the unit and co-unit of this adjunction as the composites

with the triangle identities following from the defining identities for conjoints and companions.

This can be viewed as a special case of the following more general result.

Proof.
Observe that

g∗Mf! = gA ⊙ M ⊙ fC  and  f!Ng∗ = Cf ⊙ N ⊙ Ag

so we have the composite

Proposition 12 �Adjoint Pair of Pro-arrows �Shu, 5.3��.

If f : A → B is a vertical arrow in a pro-arrow equipment D, then fB ⊣ Bf  internal to the
horizontal bicategory Hor(D).

Proposition 13 �Preservation of Adjoint Pairs under Base Change).

Let M ⊣ N  be an adjoint pair in Hor(D), with M : A ↛ B and N : B ↛ A. If
f : B → C and g : D → A are vertical morphisms, then g∗Mf! ⊣ f!Ng∗.



□
where the result now follows from the fact that adjoints compose in an arbitrary bicategory.

However, if we go with the original philosophy of pro-arrow equipments we should be
thinking of the horizontal arrows as a tool for doing category theory in the 2-category Ver(D)

. A key result in this direction is the following lemma describing how we can translate
between horizontal and vertical composites using companions and conjoints.

This equivalence is given by pasting with the squares defining companions and conjoints.
This immediately allows us to realize an adjunction in the vertical 2-category Ver(D), which
takes the form

can equivalently be phrased as squares

Using our analogy with profunctors we can think of Bf  as representing the hom B(f−, −),
while gA as A(−, g−). Tracing through how the triangle identities transform shows that we
exactly obtain squares which are vertical isomorphisms, given a formal correspondence
between internal and hom characterizations of adjunctions.

With this analogy in mind we can give the following definition of fully-faithfulness:

Lemma 14 �Central Lemma).

Given a pro-arrow equipment D, there is a natural bijection between squares of the following
forms



Finally, before moving into our ∞-categorical story lets discuss the main advertised benefit
of the use of pro-arrow equipments in formal category theory: the ability to describe the right
kind of Kan extensions. We will do this through the language of weighted (co)limits. In the
context of pro-arrow equipments the pro-arrows serve as our weights, while the vertical
arrows are what we're taking (co)limits of.

In order to define this for convenience we could require more structure on our double
category D, which classically corresponds to the requirement that we have enough (right)
extensions and lifts. Explicitly, we may require that the bicategory Hor(D) is closed, which is
to say its composition sits in a triple of adjunctions

Hor(D)(M ⊙ N ,P) ≃ Hor(D)(M,N ⊳ P) ≃ Hor(D)(N ,P ⊲ M)

The first equivalence is the statement that we have enough right lifts while the equivalence
with the second hom is the statement that we have enough right extensions. General
properties of adjoints then imply the for f : A → B, g : C → D, and M : B ↛ D,

fMg ≅(gD ⊲ M) ⊳ Bf

However, we can also define it in terms of the universal property for local right extensions
and lifts.

Definition 15 �Fully-Faithful Vertical Morphism in Pro-arrow Equipment).

A vertical morphism f : A → B in a pro-arrow equipment D is said to be fully-faithful if and
only if the canonical square

is an isomorphism in D1.

Definition 16 �Weighted (co)limits in a Pro-arrow Equipment).

Let d : D → C and J : A ↛ D be a vertical and horizontal arrow in a pro-arrow equipment
D. A vertical arrow ℓ : A → C is a J-weighted colimit of d if its conjoint Cℓ : C ↛ A

represents J-cones under d, or in other words is a right lifting of the conjoint Cd along J .
Explicitly, this means that we have a square Cℓ ⊙ J ⇒ Cd such that any square



In Prof(V) taking A = 𝟙 with hom object the monoidal unit, we obtain the usual definition of
a weighted colimit in a V-category C for a V-diagram d : D → C. Indeed, in this case a
weight J : A ↛ D is the same as a V-functor J : Dop → V, while the universal property
says that we have a natural isomorphism

C(ℓ, −) ≅∫
d′:D

C(d, d′)Jd
′

= [Dop, Set](J,C(d(−), −))

We can finally give the right definition of (pointwise) left and right Kan extensions in this
context.

Let's unpack this definition in the context of our above work. Explicitly, this says that a
pointwise left Kan extension of f : A → C along w : A → B should be a vertical arrow
w!f : B → C together with a universal square

Using Lemma 14 (Central Lemma) we can rephrase this as a square

factors through Cℓ ⊙ J ⇒ Cd via a square Cℓ ⇒ α.

Definition 17 �Pointwise Kan Extension).

If f : A → C and w : A → B are vertical arrows in D, then the pointwise left Kan
extension of f along w, if it exists, is the colimit of f weighted by the conjoint
w!B = Bw : B ↛ A.



which is the usual description of a left Kan extension, except now the weighted colimit
requirement has encoded the correct universal property to ensure that this Kan extension is
pointwise.

Explicitly, if D = Prof(V) with V a complete and cocomplete monoidal closed category, then
for V-functors F : A → C and w : A → B, a left Kan extension of F  along w (if it exists) is a
V-functor w!F : B → C together with a universal V-natural transformation

Λ : C(w!F(−), −) ⊙ B(w(−), −) ⇒ C(F(−), −)

or after adjunction, since V is (co)complete and closed, a V-natural isomorphism

Λ : C(w!F(−), −) ⇒ B(w(−), −) ⊳ C(F(−), −) = ∫
a:A

V(B(w(a), −), C(F(a), −))

which is the standard definition of a V-enriched pointwise left Kan extension.

Main takeaway: In order to define a formal notion of weighted colimits, fully-faithfulness, or
pointwise Kan extensions, one needs a formal theory encoding representability internal to
your structure.

3. Modules Between ∞-Categories
Now that we're more familiar with the classical theory of formal category theory in terms of
pro-arrow equipments we can move on to the formal category theory of ∞-categories. In this
section we will begin by introducing the notion ∞-cosmos due to Riehl and Verity7 before
introducing the necessary language of (co)cartesian fibrations5 in order to introduce
modules between ∞-categories4. Finally, we will conclude with a brief discussion of how
these modules between ∞-categories let us encode Kan extensions in ∞-cosmoi.

3.1. A Brief Introduction to ∞-Cosmoi

This note will contain only details of relevance and interest to the current topic on ∞-cosmoi.
For a more complete description we refer to Riehl and Verity's text7. We will also not delve
into the details of the quasi-categorical theory or provide definitions of such concepts here.



Morally ∞-cosmoi aim to describe the mathematical universe in which ∞-categories live,
rather than prescribing to a particular model of ∞-categories. To those familiar with the
model category literature you may notice that ∞-cosmoi can be realized as a kind of
enriched category of fibrant objects.

Moving forward we will write K for an abstract ∞-cosmos. If the reader wishes they can
have in mind that K is the ∞-cosmos QCat of quasi-categories[^7, 1.2.10], where
isofibrations are isofibrations of quasi-categories (i.e. inner fibrations that lift along boundary
inclusions into the nerve of the free living isomorphism), or even the ∞-cosmos Kan of Kan
complexes[^7, 1.2.12].

An important construction we will need when considering modules between ∞-categories is
that of sliced ∞-cosmoi.

Definition 18 (∞�Cosmos).

An ∞-cosmos K is a category enriched over the full subcategory QCat ↪ sSet of quasi-
categories, together with a class of morphisms called isofibrations (denoted ↠) such that

Isofibrations are also representably defined in the sense that if f : A ↠ B is an isofibration
and X is any object,

f∗ : Fun(X,A) ↠ Fun(X,B)

is an isofibration of quasi-categories.

1. (Completeness) in the simplicially enriched sense K possesses
1. a terminal object,

2. small products,
3. pullbacks of isofibrations,
4. limits of countable towers of isofibrations,

5. cotensors with simplicial sets

2. (Isofibrations) The class of isofibrations contains all isomorphisms and all maps A ↠ 1

(i.e. all objects are fibrant), while being closed under:
1. composition,

2. product,
3. pullback,

4. inverse limits of towers, and
5. Leibniz cotensors with monomorphisms of simplicial sets (i.e. mimicking the

notion of a closed model structure),

Definition 19 �Sliced ∞�Cosmos[^7, 1.2.22��.

For B ∈ K, the sliced ∞-cosmos K/B consists of



Additionally, for those familiar with the essential role Kan complexes play in the quasi-
categorical model of ∞-categories, it won't be surprising that an analogous class of objects
in a general ∞-cosmos will play an essential role in formal ∞-category theory, particularly
when discussing modules.

We can think of discrete ∞-categories as generalizations of ∞-groupoids as they can be
equivalently characterized by the condition that all morphisms are isomorphisms[^7, 1.2.27],
which is encoded by the statement that

E I E𝟚

is a trivial isofibration.

3.2. Modules between ∞-Categories

This modules will take the place of our pro-arrows in a suitable generalization of pro-arrow
equipments to the setting of the ∞-cosmos K. In order to act as pro-arrows in an equipment
we need that modules are suitably stable under base-change in the following sense.

1. objects: isofibrations p : E ↠ B

2. functor spaces: from p : E ↠ B to q : F ↠ B defined by pullback

FunB(p, q) := {p} ×Fun(E,B) Fun(E,F)

3. isofibrations: commutative triangles with cone point B and all legs isofibrations

4. Terminal object idB : B ↠ B, and products given by pullback

×B
i Ei := B ×∏iB

∏
I

Ei

5. Pullbacks and limits of towers of isofibrations created by K/B → K

6. Simplicial cotensor of p : E ↠ B with U ∈ sSet given by the pullback

U ⋔ p := B ×BU EU

Definition 20 �Discrete ∞�Category).

An ∞-category E ∈ K is said to be discrete if for all X ∈ K, Fun(X,E) is a Kan complex.

∼
−↠

Definition 21 �Module between ∞�Categories).

A module from A to B in K is a two-sided isofibration E A × B which is discrete as
an object of K/A×B and such that q : E ↠ A is cocartesian and p : E ↠ B is cartesian.

(q,p)
−↠



Our prime example of modules will be those obtained from the comma category

construction. Namely, the arrow ∞-category A𝟚 A × A is a module, implying that

for any co-span C → A ← B, the comma ∞-category HomA(f, g) = g ↓ f:

where g ↓ f is used to indicate that it is a module from C to B.

Now that we have our modules, or pro-arrows, we want to define a double category which
will be our pro-arrow equipment we can do formal ∞-category theory internal to. However,
as we will see shortly this isn't strictly possible for a general ∞-cosmos due to the fact that
the natural composition of modules does not preserve the property of being discrete. In
order to correct this we would need to require that our ∞-cosmoi have suitable weak
colimits. Instead of leaving their axiomatic construction at this point in order to obtain a pro-
arrow equipment of modules, Riehl and Verity instead construct a weaker structure, known
as a virtual equipment, as a full subcategory of a pro-arrow equipment of two-sided
isofibrations.

Proposition 22 �Basechange of a Module [^7, 7.4.5��.

If A ↞ E ↠ B is a module from A to B and a : A′ → A and b : B′ → B are a pair of
functors, then the pullback defines a module A′

↞ E(b, a) ↠ B′

(p1,p0)
−↠

g f

Definition 23 �Fibered Maps).

A fibered map of two-sided isofibrations from A ← E → B to A ← F → B is a fibered
isomorphism class of strictly commuting diagrams

q p s r



We can view the 1-category of isofibrations from A to B in an ∞-cosmos K as a quotient of
the homotopy 2-category h(K/A×B). This 1-category exactly captures the notion of
equivalence in K/A×B in the sense that a pair of two-sided isofibrations are equivalent in
K/A×B if and only if they are isomorphic in this one-category.

We can now define the double category which are virtual equipment will live inside

This double category generally does not have a horizontal unit since the identity span is not
generally a two-sided isofibration. However, when we restrict to the virtual double category
of modules we will realize a unit from the arrow category. First let's recall the notion of a
virtual double category, which can be thought of as an analogue of multicategories in the
double categorical world.

where two such diagrams with a and a′ are considered equivalent if there exists a natural
isomorphism γ : a ≅a′ such that sγ = idq and rγ = idp.

Definition 24 �Double Category of Two-Sided Isofibrations).

The homotopy 2-category of an ∞-cosmos K supports a (non-unital) double category of two-
sided isofibrations whose:

1. Objects are ∞-categories
2. vertical arrows are functors

3. horizontal arrows E : A ↛ B are two-sided isofibrations
4. and whose squares with boundary f : A′ → A and g : B′ → B are maps of two-sided

isofibrations over f × g.

Definition 25 �Virtual Double Category).

A virtual double category consists of

1. A category D0 of objects and vertical arrows

2. For any pair of objects A and B in D0 a collection of horizontal arrows A ↛ B



From our double category of two-sided isofibrations we can obtain a virtual double category
with the same objects, vertical arrows, and 1-ary squares, as well as n-ary cell of maps of
two-sided isofibrations over f × g : A0 × An → B0 × Bn given by

whose vertical source is the (n − 1)-fold span composite of the sequence of spans
E1, . . . ,En [7, 8.1.11]. This construction gives us a unit, in the sense of virtual double
categories, which is a 0-ary square with edges idA : A → A and horizontal two-sided

isofibration AI A × A.

The virtual double category of modules can now be given as follows [7, 8.1.14]:

and composition given by pasting.

3. Cells with boundary

4. an identity cell for vertical composition for every horizontal arrow E : A ↛ B.

(q1,q0)
−↠

Definition 26 �Virtual Double Category of two-sided isofibrations).

The virtual double category of modules Mod(K) is the full subcategory of the virtual double
category of isofibrations whose

1. objects are ∞-categories

2. vertical arrows are functors
3. horizontal arrows E : A ↛ B are modules from A to B



Note the reason we needed to pass to virtual double categories is that E1 ×A1
⋯ ×An−1

En,
although being a two-sided isofibration, need not be a module (as it may fail to be discrete in
K/(A0 × An)).

In order to define a notion of Kan extension in Mod(K) it remains to show that this virtual
double category has the structure of an virtual equipment.

In Mod(K), HomA is exactly the arrow category A𝟚 as a module, while for g : C → A and
f : B → A, we write HomA(f, g) for the base change given in Proposition 22 (Basechange
of a Module [^7, 7.4.5]). The nullary cell ι is determined by a map A → HomA = A𝟚 given
by picking out the identity idA : A → A. On the other hand, the unary cartesian cell in
Mod(K) is given as in Proposition 22 (Basechange of a Module [^7, 7.4.5]). The modules
HomB(f,B) and HomB(B, f) define conjoints and companions for f : A → B,
respectively.

3.3. Extensions Via Modules

We can now begin formalizing Kan extensions in Mod(K). This can be done using the naive
theory of right extensions in any bicategory, where the virtual bicategory we will be
considering is Ver(Mod(K)). Since virtual bicategories take a slightly different form let's
make this universal property explicit.

A right extension of a module F : A ↛ C along a module K : A ↛ B consists of a
module R : B ↛ C together with a binary cell

4. n-ary cells are fibered isomorphism classes of maps of two-sided isofibrations over
f × g, as above.

Definition 27 �Virtual Equipment).

A virtual equipment is a virtual double category such that

1. for any horizontal arrow E : A ↛ B and any pair of vertical arrows a : A′ → A and
b : B′ → B, there exists a horizontal arrow E(b, a) : A′ ↛ B′ and a unary cartesian
cell ρ satisfying the natural universal property

2. every object A admits a unit horizontal arrow HomA : A ↛ A equipped with a nullary
cocartesian cell ι satisfying the natural universal property (i.e. all n-ary cells with object
A in their domain factor uniquely through ι and identities on the other components of the
domain).



which is universal in the sense that for (n + 1)-ary cell of the form below-left, we have a
unique factorization into a composite below right:

We can now finally define what it means for to have a pointwise right Kan extension in K [7,
9.3.3]:

In order to get left Kan extensions we use the co-dual notion of right lifts in Ver(Mod(K)).
The reason that these are pointwise is that the extensions defined in this way are stable
under pasting with exact squares (or equivalently comma squares), which corresponds
classically to the condition that the Kan extensions are stable under post-composition with
representables.

With the notion of pointwise right Kan extensions we can immediately start doing formal ∞-
category theory in Mod(K). This will be expanded on in a future note for a future talk, but for

Definition 28 �Pointwise Right Extension).

A diagram of the form

in hK is a pointwise right Kan extension if and only if
ν∗ : HomB(B, k) ×⋅ HomC(C, r) ⇒ HomC(C, f) defines a right extension in
Ver(Mod(K)).



now let's cite some interesting constructions and results we obtain with this theory.

Facts:

Limits in K agree with the following definition: A limit of a diagram of ∞-categories
f : J → A is a pointwise right extension as below right

which agree with the classical definition in cartesian closed ∞-cosmoi. More generally, given
a module W : A ↛ B and a functor f : A → C, we can say that a functor limW f : B → C

defines a W -weighted limit of f if it covariantly represents the right extension of
HomC(c, f) along W . (i.e. λ : W ×⋅ HomC(C, limw f) ⇒ HomC(C, f) is a right Kan
extension).
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1. Pointwise right extensions along right adjoints exist and are given by restriction along
the left adjoint

2. Taking a right extension along a fully faithful functor (as defined in a pro-arrow
equipment with horizontal identities HomA) has as structure transformation an
isomorphism

3. A right adjoint is fully faithful if and only if its counit is an isomorphism
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